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Multifactor-Dimensionality Reduction Reveals High-Order Interactions
among Estrogen-Metabolism Genes in Sporadic Breast Cancer
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One of the greatest challenges facing human geneticists is the identification and characterization of susceptibility
genes for common complex multifactorial human diseases. This challenge is partly due to the limitations of paramet-
ric-statistical methods for detection of gene effects that are dependent solely or partially on interactions with other
genes and with environmental exposures. We introduce multifactor-dimensionality reduction (MDR) as a method
for reducing the dimensionality of multilocus information, to improve the identification of polymorphism combi-
nations associated with disease risk. The MDR method is nonparametric (i.e., no hypothesis about the value of a
statistical parameter is made), is model-free (i.e., it assumes no particular inheritance model), and is directly ap-
plicable to case-control and discordant-sib-pair studies. Using simulated case-control data, we demonstrate that
MDR has reasonable power to identify interactions among two or more loci in relatively small samples. When it
was applied to a sporadic breast cancer case-control data set, in the absence of any statistically significant independent
main effects, MDR identified a statistically significant high-order interaction among four polymorphisms from three
different estrogen-metabolism genes. To our knowledge, this is the first report of a four-locus interaction associated
with a common complex multifactorial disease.

Introduction

The identification and characterization of susceptibility
genes for common complex human diseases is one of
the greatest challenges facing human geneticists. This
challenge is partly due to the limitations of parametric-
statistical methods (i.e., those in which a hypothesis
about the value of a statistical parameter is made) for
detection of gene effects that are dependent solely or
partially on interactions with other genes (Templeton
2000) and with environmental exposures (Schlichting
and Pigliucci 1998). For example, logistic regression is
a commonly used method for modeling the relationship
between discrete predictors, such as genotypes, and dis-
crete clinical outcomes (Hosmer and Lemeshow 2000).
However, logistic regression, like most parametric-sta-
tistical methods, is less practical for dealing with high-
dimensional data. That is, when high-order interactions
are modeled, there are many contingency-table cells that
contain no observations (i.e., that are empty cells). This
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can lead to very large coefficient estimates and standard
errors (Hosmer and Lemeshow 2000). One solution to
this problem is to collect very large numbers of samples
to allow robust estimation of interaction effects; how-
ever, the magnitudes of the samples that are often re-
quired incur prohibitive expense. An alternative solution
is to develop new statistical and computational methods
that have improved power to identify multilocus effects
in relatively small samples.

To address this issue, we have developed a multi-
factor-dimensionality reduction (MDR) method for
detecting and characterizing high-order gene-gene and
gene-environment interactions in case-control and dis-
cordant-sib-pair studies with relatively small samples.
The MDR method is inspired by the combinatorial-
partitioning method (Nelson et al. 2001), a data-re-
duction method for the exploratory analysis of quan-
titative traits. With MDR, multilocus genotypes are
pooled into high-risk and low-risk groups, effectively
reducing the genotype predictors from n dimensions
to one dimension. The new, one-dimensional multilo-
cus-genotype variable is evaluated for its ability to clas-
sify and predict disease status through cross-valida-
tion and permutation testing. The MDR method is
model free—in that it does not assume any particular
genetic model—and is nonparametric—in that it does
not estimate any parameters. We first evaluate the MDR
method by using simulated multilocus data with epi-
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Figure 1 Summary of steps involved in implementation of the MDR method: a set of n genetic and/or discrete environmental factors is
selected; the n factors and their possible multifactor classes or cells are represented in n-dimensional space; each multifactor cell in n-dimensional
space is labeled as either “high-risk” or “low-risk”; and the prediction error of each model is estimated. For each multifactor combination,
hypothetical distributions of cases (left bars in boxes) and of controls (right bars in boxes) are shown.

static effects, and we then apply it to identification of
multiple single-nucleotide polymorphisms associated
with sporadic breast cancer.

Breast cancer is generally considered a complex dis-
ease, since its most common form—sporadic breast
cancer—is undoubtedly due to multiple unknown eti-
ologies. This is in contrast to the less common
form—familial breast cancer, which is attributed to sin-
gle-gene abnormalities (e.g., BRCA1 [MIM 113705]
and BRCA2 [MIM 600185]). Although the causes of
sporadic breast cancer remain undetermined, there is
substantial experimental, epidemiological, and clinical
evidence that estrogens influence breast cancer risk (Cle-
mons and Goss 2001). In fact, recent evidence indicates
that the oxidative metabolism of estrogens to catechol
estrogens and to estrogen quinones can cause mutagenic
DNA lesions (Yager and Liehr 1996; Cavalieri et al.
1997; Parl 2000). Consequently, catechol estrogen and
estrogen quinones have been implicated in mammary
carcinogenesis. The catechol-estrogen pathway is reg-
ulated by catechol-O-methyltransferase (COMT), by
cytochromes P450 1A1 and P450 1B1 (CYP1A1 and
CYP1B1, respectively), and by glutathione S-transfer-
ases M1 and T1 (GSTM1 and GSTT1, respectively).
Each of the genes encoding these enzymes contains func-

tional polymorphisms that result in different concen-
trations of catechol-estrogen metabolites (Seidegard et
al. 1988; Hayashi et al. 1991; Wiencke et al. 1995;
Cascorbi et al. 1996; Lachman et al. 1996; Persson et
al. 1997; Syvanen et al. 1997; Bailey et al. 1998a; Sto-
ilov et al. 1998; Hanna et al. 2000). We hypothesize
that interactions between polymorphisms of these genes
may have a synergistic, or nonadditive, effect on the
pathogenesis of breast cancer and, thereby, may explain
differences in breast cancer risk. Application of MDR
to a sporadic breast cancer case-control data set, in the
absence of any statistically significant independent main
effects, identified a statistically significant high-order
interaction among four polymorphisms from three
different estrogen-metabolism genes—COMT (MIM
116790), CYP1B1 (MIM 601771), and CYP1A1 (MIM
108330).

Subjects and Methods

MDR

Figure 1 illustrates the four general steps involved in
implementing the MDR method for case-control studies.
The same procedure is equally applicable to discordant-
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sib-pair studies. In step 1, a set of n genetic and/or dis-
crete environmental factors is selected from the pool of
all factors. In step 2, the n factors and their possible
multifactor classes or cells are represented in n-dimen-
sional space; for example, for two loci with three geno-
types each, there are nine two-locus–genotype combi-
nations. Then, the ratio of the number of cases (or
affected sibs) to the number of controls (or unaffected
sibs) is estimated within each multifactor class. In step
3, each multifactor cell in n-dimensional space is labeled
either as “high-risk,” if the cases:controls ratio meets
or exceeds some threshold (e.g., �1.0), or as “low-risk,”
if that threshold is not exceeded. In this way, a model
for both cases and controls (or for affected and unaf-
fected sibs) is formed by pooling high-risk cells into one
group and low-risk cells into another group. This re-
duces the n-dimensional model to a one-dimensional
model (i.e., having one variable with two multifactor
classes—high risk and low risk). In this initial imple-
mentation of MDR, balanced case-control studies are
required. In step 4, the prediction error of each model
is estimated by 10-fold cross-validation. Here, the data
(i.e., subjects) are randomly divided into 10 equal parts.
The MDR model is developed for each possible 9/10 of
the subjects and then is used to make predictions about
the disease status of each possible 1/10 of the subjects
excluded. The proportion of subjects for which an in-
correct prediction was made is an estimation of the pre-
diction error. To reduce the possibility of poor estimates
of the prediction error that are due to chance divisions
of the data set, the 10-fold cross-validation is repeated
10 times, and the prediction errors are averaged.

For studies with more than two factors, the four steps
of the MDR method are repeated for each possible com-
bination, if computationally feasible. If the number of
combinations to be evaluated exceeds computational feas-
ibility, machine learning methods, such as parallel genetic
algorithms (Cantú-Paz 2000), must be employed. Among
all of the two-factor combinations, a single model that
maximizes the cases:controls ratio of the high-risk group
is selected. This two-locus model will have the minimum
classification error among the two-locus models. Single
best multifactor models are also selected from among the
models for each of the three- to n-factor combinations.
Among this set of best multifactor models, the combi-
nation of loci and/or discrete environmental factors that
minimizes the prediction error is selected. Thus, the clas-
sification errors and the prediction errors estimated by
10-fold cross-validation are used to select the final mul-
tifactor model. Hypothesis testing for this final model can
then be performed by evaluating the consistency of the
model across cross-validation data sets—that is, how
many times the same MDR model is identified in each
possible 9/10 of the subjects. The reasoning is that a true
signal (i.e., association) should be present in the data re-

gardless of how they are divided. We determined statistical
significance by comparing the average cross-validation
consistency from the observed data to the distribution of
average consistencies under the null hypothesis of no as-
sociations derived empirically from 1,000 permutations.
The null hypothesis was rejected when the upper-tail
Monte Carlo P value derived from the permutation test
was �.05.

Data Simulation

To evaluate the MDR method, we simulated four sets
of 50 replicates of 200 cases and 200 controls, using
four different multilocus epistasis models. This number
of replicates was selected to be large enough to provide
validation of the method and to be small enough to allow
exhaustive computational searches of all possible mul-
tilocus models. Unrelated subjects and genotypes for 10
unlinked biallelic loci were simulated by the Genometric
Analysis Simulation Package (Wilson et al. 1996). Allele
frequencies for each of the 10 loci were selected to match
those in the sporadic–breast cancer case-control sample.
Hardy-Weinberg equilibrium and linkage equilibrium
were assumed. For the first model, we simulated a two-
locus interaction effect, using penetrance functions
P(DFAAbb) p .2, P(DFAaBb) p .2, P(DFaaBB) p .2,
and P(DFothers) p 0, where D is disease and A, a, B,
and b represent the alleles for the disease-susceptibility
loci. This is a well-characterized model for epistasis, in
which disease risk is dependent on whether two dele-
terious alleles and two normal alleles are present, from
either one locus or both loci (Frankel and Schork 1996;
Li and Reich 2000). As described by Frankel and Schork
(1996) and by Li and Reich (2000), the independent
main effects for the loci in this model are small. We
extended this two-locus epistasis model to three-locus,
four-locus, and five-locus epistasis models by adding cor-
responding homozygous or heterozygous genotypes to
the aforementioned penetrance functions. For example,
for the three-locus epistasis model, we used penetrance
functions P(DFAAbbcc) p .2, P(DFAaBbcc) p .2,
P(DFaaBBcc) p .2, P(DFaaBbCc) p .2, P(DFAabbCc)
p .2, and P(DFaabbCC) p .2. Thus, of the 10 total
simulated loci, there were 2, 3, 4, or 5 functional epi-
static loci and up to 8 nonfunctional loci.

Sporadic–Breast Cancer Data

This study is based on 200 white women with sporadic
primary invasive breast cancer who were treated at Van-
derbilt University Medical Center during 1982–96. In-
formed consent for this study was obtained from all
study subjects, in accordance with the requirements of
the Institutional Review Board of Vanderbilt University
Medical School. Breast cancer was classified as either
sporadic or familial, on the basis of family history as
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Table 1

Enzyme Genotype Analysis by PCR and Restriction-Endonuclease Digestion

ENZYME

POLYMORPHISM

PRIMERS ENDONUCLEASE

GENOTYPE

FREQUENCYa

(%)

Nucleotide Codon w/w w/p p/p

COMT 1947GrA 158ValrMet C1, C2 BspHI 25 51 24
CYP1A1:

m1 T6235TrC 3′ UTR A3, A4b MspI 82 15 3
m2 4887CrA 461ThrrAsn A1, A4b BsaI 92 7 1
m4 4889ArG 462IlerVal A1, A2b BsrDI 92 8 0

CYP1B1:
Codon 48 143CrG 48ArgrGly B1, B2c RsrII 51 40 9
Codon 119 355GrT 119AlarSer B1, B2c NgoMIV 51 40 9
Codon 432 1294GrC 432ValrLeu B3, B4c Eco57I 12 58 30
Codon 453 1358ArG 453AsnrSer B3, B4c Cac8I 68 30 2

GSTM1 Deletion Loss of enzyme M1, M2b … 57d 43
GSTT1 Deletion Loss of enzyme T1, T2b … 79d 21

a w p Wild-type allele; p p polymorphic allele.
b Bailey et al. (1998b).
c Bailey et al. (1998a).
d Either w/w or w/p genotype.

determined by patient questionnaire: patients with either
at least one first-degree relative with breast cancer or at
least two second-degree relatives with breast cancer were
considered to have familial breast cancer; patients not
fulfilling these criteria were considered to have sporadic
breast cancer. Patients with sporadic breast cancer were
frequency age-matched to control patients at Vanderbilt
University Medical Center who had been hospitalized
for various acute and chronic illnesses. Reasons for ex-
clusion of controls included breast cancer or other forms
of malignancy, as well as family history of breast cancer.

DNA was isolated from all samples by use of a DNA
extraction kit (Gentra). Because their enzyme products
interact in the metabolism of estrogens to catechol es-
trogens and to estrogen quinones, our analysis focused
on the genes COMT (MIM 116790), on chromosome
22q11.2; CYP1A1 (MIM 108330), on chromosome
15q22-qter; CYP1B1 (MIM 601771), on chromosome
2p21-22; GSTM1 (MIM 138350), on chromosome
1p13.3; and GSTT1 (MIM 600436), on chromosome
22q11.2. COMT and GSTT1 are ∼4 Mb apart on chro-
mosome 22q11.2. Table 1 summarizes the polymor-
phisms, in these genes, that we analyzed by PCR and
restriction-endonuclease digestion. Genotype frequen-
cies have been previously reported by our group (Bailey
et al. 1998a, 1998b; Parl 2000) and by others (Lavigne
et al. 1997; Millikan et al. 1998; Thompson et al. 1998).
The specific primers and amplification conditions and
the subsequent restriction-endonuclease analysis for
CYP1A1, CYP1B1, GSTM1, and GSTT1 have been de-
scribed elsewhere (Bailey et al. 1998a, 1998b). COMT
was amplified with primers C1 (5′-GCC GCC ATC ACC
CAG CGG ATG GTG GAT TTC GCT GTC) and C2

(5′-GTT TTC AGT GAA CGT GGT GTG). Each PCR
contained internal controls for the respective gene, and
random retesting of ∼5% of the samples yielded 100%
reproducibility.

Data Analysis

Prior to application of MDR to the sporadic–breast
cancer data set, the method was evaluated by use of the
simulated multilocus data sets. For each of the 50 rep-
licates generated by each of the four multilocus epistasis
models, we applied the MDR algorithm as described in
the subsection “MDR,” with a threshold cases:controls
ratio of at least 1:1. This threshold was selected so that
multilocus-genotype combinations would be considered
high-risk if the number of cases with that particular com-
bination either was equal to or exceeded the number of
controls; whether more-stringent thresholds improve the
results will be the focus of future studies. An exhaustive
search of all possible two- to nine-locus models was
performed. The 10-locus model was not evaluated, since
there is only one such model and since its cross-vali-
dation consistency is always 10. On validation of the
method, MDR was then applied to the sporadic–breast
cancer data set, with the same threshold cases:controls
ratio, at least 1:1. An exhaustive search of all possible
two- to nine-locus models was again performed.

Results

Application of MDR to Simulated Data

Table 2 summarizes the means and the standard errors
of the means (SEMs), of both the cross-validation con-
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Table 2

Summary of Simulation Results

No. of
Locia

MEAN � SEM

Cross-Validation
Consistency Prediction Error

Model 2:
2 9.86 � .08 14.99 � .24
3 7.41 � .21 15.58 � .26
4 6.01 � .22 16.49 � .29
5 5.56 � .24 19.03 � .38
6 6.52 � .34 23.23 � .53
7 6.94 � .26 24.49 � .62
8 7.90 � .29 25.02 � .73
9 8.03 � .23 25.40 � .73

Model 3:
2 9.20 � .17 21.91 � .33
3 10.00 � .00 12.00 � .22
4 9.27 � .13 12.37 � .24
5 6.28 � .21 13.90 � .28
6 5.86 � .25 15.57 � .32
7 6.26 � .29 17.75 � .43
8 7.68 � .28 19.39 � .47
9 7.99 � .25 19.93 � .50

Model 4:
2 8.40 � .26 19.15 � .35
3 8.79 � .20 10.20 � .23
4 10.00 � .00 5.68 � .17
5 9.32 � .12 6.02 � .19
6 7.74 � .16 6.88 � .22
7 7.01 � .22 7.73 � .26
8 7.04 � .24 8.64 � .31
9 7.79 � .24 9.46 � .34

Model 5:
2 9.01 � .20 15.33 � .28
3 8.37 � .25 8.54 � .24
4 8.16 � .25 5.17 � .20
5 9.99 � .01 2.95 � .11
6 9.52 � .12 3.17 � .14
7 9.13 � .16 3.66 � .17
8 8.74 � .17 4.17 � .19
9 9.00 � .14 4.60 � .18

NOTE.—For each simulation model, the multilocus
model with maximum mean � SEM cross-validation con-
sistency and minimum mean � SEM prediction error is
indicated in boldface italic type.

a Model number is based on the number of epistatic
genes in each simulation model.

sistency and the prediction error, obtained from the
MDR analysis of each group of 50 simulated data sets
for each gene-gene interaction model and each number
of loci evaluated. For the particular multilocus models
that contain the correct two, three, four, or five genes,
for each group of 50 simulated data sets, the mean
prediction error was minimum, and the mean cross-
validation consistency was maximum. Additionally, the
SEM of the prediction error and of the cross-validation
consistency was minimum at the correct multilocus
model. For example, in the case in which a three-locus
epistasis model was used to simulate the data sets, the

mean � SEM prediction error was minimum for the
three-locus model, at . The two-locus12% � 0.22%
models had a mean � SEM prediction error of

), whereas the four-locus model had a21.91% � 0.33%
mean � SEM prediction error of .12.37% � 0.24%
The mean prediction error for the four-locus model was
much closer to that of the three-locus model, because
these models contained the correct three functional loci
as well as a false-positive locus, whereas the two-locus
models were missing one of the functional loci. Selecting
the smaller three-locus model with the lower mean pre-
diction error is consistent with statistical parsimony (i.e.,
smaller models are better because they are easier to in-
terpret). For the three-locus models in this example, the
cross-validation consistency was always 10.00; that is,
the same three-locus model was found in each possible
9/10 of the subjects. These results suggest that, for this
particular epistasis model, the cross-validation strategy
is a reasonable approach to the identification of the cor-
rect multilocus model. Furthermore, the threshold cases:
controls ratio of at least 1:1 was reasonable for this
epistasis model.

The Monte Carlo P values for each of the correctly
identified models were all !.001. The estimated power
to identify the correct multilocus model was 78% for
the two-locus model, 82% for the three-locus model,
94% for the four-locus model, and 90% for the five-
locus model. It is interesting that the power to identify
the correct multilocus model tends to increase as higher-
order interactions are modeled. This may be a real phe-
nomenon, or it may be due to the fact that fewer non-
functional loci of the 10 that were simulated were
present; this will require further investigation. These re-
sults suggest that, for this particular epistasis model, the
MDR method has reasonable power to identify high-
order gene-gene interactions in a sample of 200 cases
and 200 controls.

Application of MDR to Breast Cancer Data

Table 3 summarizes the cross-validation consistency
and the prediction error obtained from MDR analysis
of the sporadic–breast cancer case-control data set, for
each number of loci evaluated. One four-locus model
had a minimum prediction error of 46.73 and a maxi-
mum cross-validation consistency of 9.8 that was sig-
nificant at the .001 level, as determined empirically by
permutation testing. Thus, under the null hypothesis of
no association, it is highly unlikely that a cross-valida-
tion consistency �9.8 will be observed for this four-locus
model. The four-locus model included the polymor-
phisms of COMT, CYP1A1m1, CYP1B1 codon 48, and
CYP1B1 codon 432. Figure 2 summarizes the four-
locus–genotype combinations associated with high risk
and with low risk, along with the corresponding distri-
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Table 3

Summary of Results for Breast Cancer

No. of
Loci

Cross-Validation
Consistency

Prediction
Error

2 7.00 51.06
3 4.17 51.35
4 9.80a 46.73
5 4.71 50.26
6 5.00 48.61
7 8.60 47.15
8 8.20 52.55
9 7.10 53.40

NOTE.—The multilocus model with maximum
cross-validation consistency and minimum predic-
tion error is indicated in boldface italic type.

a .P ! .001

bution of cases and of controls, for each multilocus-
genotype combination. Note that the patterns of high-
risk and low-risk cells differ across each of the different
multilocus dimensions. This is evidence of epistasis, or
gene-gene interaction; that is, the influence that each
genotype at a particular locus has on disease risk is de-
pendent on the genotypes at each of the other three loci.
Previous analysis of this data set, by logistic regression,
revealed no statistically significant evidence of indepen-
dent main effects of any of the 10 polymorphisms (Bailey
et al. 1998a, 1998b; authors’ unpublished data).

Discussion

We have introduced MDR as a method for reducing the
dimensionality of multilocus information, to improve
identification of combinations of polymorphisms asso-
ciated with the risk for common complex multifactorial
diseases. The development of MDR was motivated by
the limitations of the generalized linear model for
detection and characterization of gene-gene (Templeton
2000) and gene-environment (Schlichting and Pigliucci
1998) interactions and by the success of data-reduction
methods for quantitative traits (Nelson et al. 2001). Us-
ing simulated data, we demonstrated the applicability of
MDR for identification of genes whose effects are pri-
marily through interaction. We then applied MDR to
identify gene-gene interaction effects on risk for sporadic
breast cancer.

Breast cancer is generally considered a multifactorial
disease with estrogens as one of the principal factors. We
therefore applied MDR to a set of genes (i.e., COMT,
CYP1A1, CYP1B1, GSTM1, and GSTT1) whose protein
products interact as enzymes in the metabolism of estro-
gens in breast tissue. Several studies have examined the
breast cancer risk associated with individual genotypes
of each of these enzymes (Rebbeck et al. 1994; Ambro-
sone et al. 1995; Lavigne et al. 1997; Bailey et al. 1998a;

Millikan et al. 1998; Thompson et al. 1998). Not sur-
prisingly, the results have been inconsistent and even con-
tradictory. That is, if a single gene in the estrogen-me-
tabolism pathway were solely responsible for breast
cancer, then the malignancy would likely present as fa-
milial breast cancer, and the gene would be identified by
linkage analysis, as in the case of BRCA1 and BRCA2.
Studies of two or three genotypes in combination have
also yielded inconsistent results. For example, we ex-
amined CYP1A1, GSTM1, and GSTT1 polymorphisms
in a case-control study of 328 white and 108 African
American women, using multiple logistic-regression anal-
ysis (Bailey et al. 1998b). None of the enzyme geno-
types—individually or combined—were associated with
an increased risk for breast cancer. However, we did not
include COMT and CYP1B1 in the analysis, because
their roles in the catechol-estrogen pathway and/or their
various polymorphisms were only recently elucidated
(Yager and Liehr 1996; Cavalieri et al. 1997; Bailey et
al. 1998a; Stoilov et al. 1998; Parl 2000). Because of
their clearly defined functional interactions in the cate-
chol-estrogen pathway, it is essential to consider the com-
bined effect of all these enzymes. In this article, we have
demonstrated that the MDR applied to 10 single-nucle-
otide polymorphisms in COMT, CYP1A1, CYP1B1,
GSTM1, and GSTT1 identifies a four-locus interaction
that is significantly associated with risk for sporadic
breast cancer. To our knowledge, this is the first report
of a four-locus interaction associated with a common
complex multifactorial disease.

Many groups, including our own, have reported that
breast cancer risk is influenced by several nongenetic
hormonal factors, such as age at menarche, and by age
at menopause, body-mass index, reproductive history,
lactation history, and use of exogenous estrogen in the
form of either oral contraceptives or hormone-replace-
ment therapy (Kelsey and Berkowitz 1988; Dupont et
al. 1989; Harris et al. 1992; Kelsey et al. 1993; Col-
laborative Group on Hormonal Factors in Breast Can-
cer 1996, 1997). Although these factors allow predic-
tion of a relative risk for a given population, they are
not very helpful to individual women. As defined by the
MDR, the determination of a woman’s genotype may
add another dimension to the assessment of overall
breast cancer risk. However, it is obvious that there is
also an interaction between genotype risk factors and
traditional hormonal risk factors. For example, obesity
has been related both to the concentration of endoge-
nous estrogen and to breast cancer risk. Several studies
have demonstrated that obese postmenopausal women
have an increased risk for breast cancer, compared to
age-matched nonobese postmenopausal women (Harris
et al. 1992; Yong et al. 1996). The elevated risk has
been attributed to higher levels of circulating estrogens
secondary to increased conversion, in adipose tissue, of
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Figure 2 Summary of four-locus genotype combinations associated with high risk and with low risk for sporadic breast cancer, along
with the corresponding distribution of cases (left bars in boxes) and of controls (right bars in boxes), for each multilocus-genotype combination.
Note that the patterns of high-risk and low-risk cells differ across each of the different multilocus dimensions. This is evidence of epistasis, or
gene-gene interaction.

androgen to estrogen. Several studies have demon-
strated significantly higher serum-estradiol concentra-
tions in obese postmenopausal women than in their
nonobese counterparts (MacDonald et al. 1978; Moore
et al. 1987; Potischman et al. 1996). Thus, any effect
that COMT, CYP1A1, CYP1B1, GSTM1, and GSTT1
may have on estrogen metabolism may be affected by
the concentration of estradiol. Consequently, our pres-
ent analysis of genetic factors is limited by lack of con-
sideration of these traditional hormonal risk factors.

The Advantages of MDR

The primary advantage of MDR is that it facilitates
the simultaneous detection and characterization of mul-
tiple genetic loci associated with a discrete clinical end-
point. This is accomplished by reducing the dimension-
ality of the multilocus data. In essence, genotypes from
multiple loci and/or discrete environmental classes are
pooled into high-risk and low-risk groups, depending on
whether they are more common in affected or in unaf-

fected subjects. This new multilocus-genotype encoding
reduces the dimensionality to one. For the simulated
data, the mean cross-validation consistency was always
maximized, and the mean prediction error was always
minimized, at the correct multilocus model.

Another important advantage of MDR is that it is
nonparametric. This is an important difference versus
traditional parametric-statistical methods, which rely on
the generalized linear model. For example, in logistic
regression, as each additional main effect is included in
the model, the number of possible interaction terms
grows exponentially. Having too many independent var-
iables in relation to the number of observed outcome
events is a well-recognized problem (Concato et al.
1993). Simulation studies by Peduzzi et al. (1996) sug-
gest that having fewer than 10 outcome events per in-
dependent variable can lead to biased estimates of the
regression coefficients and to an increase in type 1 and
type 2 errors. For example, with two outcome events
per independent variable, more than one-third of the
estimated regression coefficients differed from the true
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parameter value by a magnitude of 2 (Peduzzi et al.
1996). Hosmer and Lemeshow (2000) suggest that lo-
gistic-regression models should contain no more than

parameters, where is the num-P � 1 � min (n ,n )/10 n1 0 1

ber of events of type 1 and is the number of eventsn0

of type 0. For the 200 cases and the 200 controls eval-
uated in the present study, this formula suggests that no
more than 19 parameters should be estimated in a lo-
gistic-regression model. In a logistic-regression model,
how many parameters must be estimated to identify
interactions among the 10 estrogen-metabolism–gene
polymorphisms? The number of orthogonal-regression
terms needed to describe the interactions among a sub-
set, k, of n biallelic loci is (Wadek(n choose k) # 2
2000). Thus, for 10 genes, we would need 20 parameters
to model the main effects (assuming two dummy vari-
ables per biallelic locus), 180 parameters to model the
two-way interactions, 1,920 parameters to model the
three-way interactions, 3,360 parameters to model the
four-way interactions, and so forth. Thus, fitting a full
model with all interaction terms and then using back-
ward elimination to derive a parsimonious model would
not be possible. The MDR method avoids the problems
associated with the use of parametric statistics to model
high-order interactions.

A third advantage of MDR is that it assumes no par-
ticular genetic model (i.e., it is model free); that is, no
mode of inheritance needs to be specified. This is im-
portant for diseases, such as sporadic breast cancer, in
which the mode of inheritance is unknown and likely
very complex. In its current form, MDR can be directly
applied to case-control and discordant-sib-pair studies.
Extension to other family-based control study designs,
such as those using trios, should also be possible.

A fourth advantage of MDR is that false-positive re-
sults due to multiple testing are minimized. This is pri-
marily due to the cross-validation strategy used to select
optimal models. Data-reduction and pattern-recognition
methods are good for identification of complex rela-
tionships among data, even when those relationships are
due to either chance or false-positive variations. How-
ever, the real test of any method is its ability to make
predictions in independent data (Ripley 1996). Cross-
validation divides the data into 10 equal parts, allowing
9/10 of the data to be used to develop a model and the
independent 1/10 of the data to be used to evaluate the
predictive ability of the model. Optimal models are se-
lected solely on the basis of their ability to make pre-
dictions with regard to independent data. Only when a
final predictive model has been selected is the null hy-
pothesis of no association tested via permutation testing.
It is this combined cross-validation–testing/permutation-
testing method that minimizes false-positives due to
multiple examinations of the data.

The Disadvantages and Limitations of MDR

Although MDR overcomes some of the limitations of
the generalized linear model, there are three important
disadvantages. First, MDR can be computationally inten-
sive, especially when more than 10 polymorphisms need
to be evaluated. A genome scan with hundreds to
thousands of polymorphisms requires robust machine
learning algorithms, since all of the possible multilocus
combinations cannot be exhaustively searched. This is,
however, a limitation of any multilocus method that does
not first condition on a particular locus having an inde-
pendent main effect (e.g., stepwise logistic regression).
Second, MDR models can be difficult to interpret. This
is illustrated clearly in the four-locus model in figure 2.
There are no obvious trends or patterns in the distribution
of high-risk and low-risk groupings across the four-di-
mensional genotype space; for example, a consistent trend
of high-risk or low-risk cells across a series of rows or of
columns may indicate that a particular locus has a main
effect. The lack of such trends in the four-locus model for
breast cancer is indicative of epistasis; that is, the influence
of each genotype on disease risk appears to be dependent
on the genotypes at each of the other loci. Sorting out the
nature of the interactions in four-dimensional space to
infer function remains an interpretive challenge. Third, in
its current form, MDR can be applied only to case-control
studies that are balanced (i.e., that have the same number
of cases and of controls). This limitation will be addressed
in future studies (see the following subsection, “Future
Studies”).

Another limitation of MDR is its ability to make pre-
dictions for independent data sets when the dimension-
ality of the best model is relatively high and the sample
is relatively small. High dimensionality and a small sam-
ple lead to many multifactor cells with either missing
data or singleton data. This is not a problem for esti-
mation of the classification error and evaluation of the
cross-validation consistency, but it is a problem for es-
timation of the prediction error. For example, if there
were one observation for each multifactor cell in n-di-
mensional space, then, during cross-validation, that one
observation will end up in either the training data used
to estimate the classification error or the test data used
to estimate the prediction error but not in both. If the
observation ends up in the test data, there will be, from
the training data, no model (i.e., there will be an empty
cell) to make a prediction. This greatly limits the number
of observations for which predictions can be made in
the test set and ultimately impacts the SEM of the
prediction error. Proposed future studies will address
this limitation (see the following subsection, “Future
Studies”).
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Future Studies

The MDR is a powerful alternative to traditional
parametric statistics such as logistic regression. We have
demonstrated the MDR’s ability to identify high-order
(i.e., more than two) gene-gene interactions in relatively
small simulated and real data sets. Although MDR ad-
dresses some of the limitations of the generalized linear
model, there are several ways in which the method can
be improved.

First, if MDR is going to be used for genome scans
with hundreds to thousands of single-nucleotide poly-
morphisms, then it will be necessary to develop ma-
chine learning strategies to optimize the selection of
polymorphisms to be modeled, since an exhaustive
search of all possible combinations will not be pos-
sible. We are currently exploring the use of parallel
genetic algorithms (Cantú-Paz 2000) as a robust ma-
chine learning approach.

Second, it will be important to improve MDR’s pre-
dictive ability in the higher dimensions. We are currently
exploring several strategies to improve the estimation of
the prediction error. The first strategy uses a nearest-
neighbor method to determine whether an empty cell
should be classified as high risk or as low risk; for
example, if the majority of multilocus-genotype com-
binations within one step in n-dimensional space are
classified as high risk, then the empty cell is also classified
as high risk. The second strategy projects either a high
risk or a low risk classification for an empty cell in a
lower dimension; for example, the locus with the least-
frequent genotype might be removed from the model,
and risk could then be determined from the equivalent
genotypes in a lower dimension. These strategies will be
compared to determine whether either improves the
estimation of the prediction error when empty cells are
present.

Third, it will be important to modify MDR for the
analysis of unbalanced case-control studies. We are cur-
rently exploring several different weighting schemes for
the case-control ratio that account for whether the total
number of cases or the total number of controls is
greater. Finally, simulation studies will be needed to de-
termine the strengths and the weaknesses of MDR in
the presence of genotyping errors, phenocopies, genetic
heterogeneity, and other phenomena that complicate the
identification and characterization of functional poly-
morphisms. We anticipate that data-reduction methods
such as MDR will be invaluable for the identification
and characterization of high-order gene-gene and high-
order gene-environment interactions, when few degrees
of freedom are available for parametric-statistical esti-
mation of interaction effects.
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